Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe–Al Mixtures: Current-Related or Kirkendall Effect?

نویسندگان

  • Dina V. Dudina
  • Boris B. Bokhonov
  • Amiya K. Mukherjee
چکیده

A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500-650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe-Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe-Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure of spark plasma sintered TiB2 and TiB2–AlN ceramics

In this research study, the effects of aluminum nitride (AlN) additive on the densification behavior and microstructure development of titanium diboride (TiB2) based ceramic matrix composite were investigated. In this way, a monolithic TiB2 ceramic and a TiB2–5 wt% AlN ultrahigh temperature ceramic composite were fabricated by spark plasma sintering (SPS) proces...

متن کامل

Friction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...

متن کامل

IN SITU FABRICATION OF Al 2024-Mg2Si COMPOSITE BY SPARK PLASMA SINTERING OF REACTIVE MECHANICALLY ALLOYED POWDER

In situ Al2024- Mg2Si composite was fabricated by spark plasma sintering (SPS) of reactive powder. Reactive powder was obtained from mechanical alloying (MA) of elemental powders. Clad layers of in situ composite were fabricated on Al substrates by spark plasma sintering (SPS). Structural evolution during MA process and after SPS was investigated by X-ray diffractometery (XRD). Scanning electro...

متن کامل

Friction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...

متن کامل

The Structure of FeAl Sinters Fabricated Using Cyclic Loading

A two stage process including a sintering under a cyclic loading is proposed as an alternative fabrication method of dense FeAl intermetallics from elemental powder mixtures. The first stage (pre-sintering) is conducted at two temperature values (620 °C and 670 °C, respectively) under a static and a cyclic loading with a frequency of 20, 40 and 60 Hz. The second one includes a pressureless sint...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016